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We present a new compact expansion of a random flow field into stochastic spatial
modes, hence extending the proper orthogonal decomposition (POD) to noisy (non-
coherent) flows. As a prototype problem, we consider unsteady laminar flow past
a circular cylinder subject to random inflow characterized as a stationary Gaussian
process. We first obtain random snapshots from full stochastic simulations (based
on polynomial chaos representations), and subsequently extract a small number
of deterministic modes and corresponding stochastic modes by solving a temporal
eigenvalue problem. Finally, we determine optimal sets of random projections for the
stochastic Navier–Stokes equations, and construct reduced-order stochastic Galerkin
models. We show that the number of stochastic modes required in the reconstruction
does not directly depend on the dimensionality of the flow system. The framework
we propose is general and it may also be useful in analysing turbulent flows, e.g. in
quantifying the statistics of energy exchange between coherent modes.

1. Introduction
The proper orthogonal decomposition (POD) approach was originally proposed

by Lumley (1970) for detecting spatially coherent structures in turbulent flows. An
important extension that led to significant computational reductions was proposed by
Sirovich (1987), and since then POD has been used in many applications in analysing
both laminar and turbulent flows using experimental or numerical simulation data, e.g.
Delville et al. (2003), Gordeyev & Thomas (2000), Deane et al. (1991), Ma et al. (2003),
Noack et al. (2003), see also Rempfer (2003), Holmes, Lumley & Berkooz (1996), and
references therein. A particularly useful approach to POD was developed by Aubry
(1991) (see also Aubry, Guyonnet & Lima 1995) who introduced the biorthogonal
decomposition, a deterministic space–time symmetric version of the POD. The flow
field is decomposed into a hierarchical set of spatial and temporal orthogonal modes
which are coupled. This generalizes the notion of spatial and temporal structures
which, for example, can be followed through the various instabilities that the flow
undergoes as Reynolds number increases.

However, if the observed flow is noisy, perturbed or, more generally, it is considered
as a superimposition of random and deterministic elements, then its space–time struc-
tures should be considered random as well. A compact mathematical representation
of the relationship between a noisy flow and its random space–time structures is
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lacking. Following the standard POD framework is challenging as it involves random
perturbations of the autocorrelation operator’s spectral properties; a number of recent
efforts have focused on this, e.g. Everson & Roberts (2000), Sengupta & Mitra (1999),
Hachem, Loubaton & Najim (2006), Dozier & Silverstein (2007), Hoyle & Rattray
(2004). An alternative approach, developed recently by Venturi (2006), provides an
analytical characterization of the fluctuations of eigenvalues and eigenfunctions of the
response to random perturbations by employing Kato’s perturbation theory for linear
operators (Kato 1995). The statistics for the perturbed energy levels and the perturbed
modes are expressed explicitly in terms of a power series of the random flow standard
deviation. As pointed out in the conclusions of Venturi (2006), however, the issue of
stochastic low-dimensional modelling and simulation is still an open question. In par-
ticular, a critical point is how ’randomness’ propagates in Galerkin models or in modal
energy flow analyses (Noack, Papas & Monkiewitz (2005)). Similarly, Burkardt &
Webster (2007) pointed out that “. . .little work has been done on extending the POD
method to the field of stochastic PDEs and yet this is a field of study which seems
ideal for this approach, given the need to consider a vast ensemble of solutions”.

In terms of representing random processes spectrally, the polynomial chaos
approach (see Ghanem & Spanos 1998) and its generalization (Xiu & Karniadakis
2002), allows accurate representations. While mathematically elegant, however,
standard polynomial chaos stochastic Galerkin schemes suffer form the ‘curse of
dimensionality’: the number of basis functions increases exponentially with the size
of random vector characterizing the system. In order to mitigate such computational
cost, several authors have attempted to extend the POD low-dimensional modelling
ideas to the stochastic framework. For example, Acharjee & Zabaras (2006) proposed
expanding each polynomial chaos spatio-temporal mode according to the classical
deterministic space–time biorthogonal decomposition. Also, Doostan, Ghanem &
Red-Horse (2007) proposed a multiscale procedure based on two steps: a coarse-scale
analysis to identify the low-dimensional manifold corresponding to the stochastic
solution (assuming it exists!), and a subsequent fine-scale analysis based on the
results of the coarse scale. However, many of these attempts are often straightforward
applications of the standard POD theory in the deterministic (Acharjee & Zabaras
2006) or in the statistical (Doostan et al. 2006) sense and do not provide a new
theoretical framework for analysing noisy flow systems.

In this paper we propose a new framework based on an expansion that employs
random modes to represent the noisy flow field. We assume that we have available
several random snapshots of the flow and we attempt to minimize the approximation
error in different norms, appropriately defined both in random and deterministic
spaces. The advantage of our method with respect to the deterministic POD (which is
included in our theory as a subcase) is that if one is able to compute the random flow
in any representation (e.g. Monte Carlo, polynomial chaos, etc.), then it is possible to
represent the entire ensemble of the random flow behaviour in a compact form for
purposes of both analysis and low-dimensional modelling. To this end, we develop a
theory for random projections, based on which we can construct, for example, a single
model for all flows past a circular cylinder with the Reynolds number as a stochastic
input in the range [Rel, Reu]. This, in turn, allows us to study the instabilities the
flow undergoes as a function of the Reynolds number, which is now a parameter
that explicitly appears in the system and which we can directly control. It is also
possible to analyse energy cascades and correlation between random energy levels
in the statistical sense, which can be very useful in analysing turbulent flows. For
example, using the standard POD approach to first relate the (standard) POD modes
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to the coherent structures of the flow, we can then use the theory we present here
to quantify how these structures exchange energy. This, in turn, means that we can
analyze both the energy cascade and determine which structures have high correlation
in a statistical sense.

As an illustrative example, we consider the flow past a circular cylinder, and we
study the response of this flow to a random inflow perturbation, which is assumed to be
a Gaussian homogeneous stationary process with Gaussian covariance. Random flow
past a circular cylinder has been recently investigated by various stochastic methods
(see e.g. Wan & Karniadakis 2006a; Kamiński & Carey 2005; Xiu & Karniadakis
2003). We obtain the initial condition from a fully developed deterministic (time-
periodic) state, and we study the transient state corresponding to the random inflow
condition. In Venturi (2006), randomness was included in the system through a
Gaussian uncorrelated random perturbation superimposed on a deterministic state.
This kind of noise was chosen empirically to model an experimental-like type of
uncertainty. The spectral properties of the random autocorrelation function were
obtained by perturbation theory, using well-known properties of Gaussian processes.
In the current work, randomness comes from the response of the Navier–Stokes
equations to a random inflow boundary condition, and therefore this randomness is
related to the intrinsic behaviour of the fluid flow.

The paper is organized as follows. In § 2 we develop a representation of the
random flow in terms of a superimposition of random, weakly orthogonal, spatial
structures evolving in time. In § 3 we apply the new methodology to the random
laminar wake past a circular cylinder corresponding to a random inflow condition
whose representation is described in detail in § 3.2. In § 3.4 we obtain a reduced-order
representation of the random wake as a superimposition of random spatial structures,
and in § 3.7 we study the stochastic low-dimensional model arising from the random
projection. The main findings and their implications are summarized in § 4. We also
include three brief Appendices for the interested reader to be able to reproduce our
results.

2. Flow decomposition into a superimposition of random modes
It is often convenient to represent complex flows as a superimposition of

modes. Clearly the method for decomposition and the criterion for representation
depend on the particular problem. For instance, Fourier transforms are standard
tools to determine energy cascades in turbulent flows while proper orthogonal
decompositions have been extensively used to detect spatially coherent structures
in various applications (see e.g. Gordeyev & Thomas 2000; Delville et al. 2003).

The first step in obtaining useful information about the flow field through a
particular type of decomposition is to determine what kind of information we are
trying to extract or we are mainly interested in. This results in the identification of
a criterion for decomposition (see table 1). In the presence of random fields, this
operation is much more challenging than in the corresponding deterministic case.
In fact, the complexity and the high dimensionality of these fields naturally yields a
wide range of possible choices for decomposing them. In § 2.1, we develop tools for a
decomposition theory based on three criteria:

optimal representation of the mean flow;
optimal representation of the second-order moment;
optimal representation of the standard deviation.
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Random field u (x, t; ξ ) (any representation) obtained from stochastic numerical
simulations or from experiments through estimation methods

↓

Choice of the
criterion for
decomposition

→

• Optimal representation in the mean sense
• Optimal representation in second-order moment sense
• Optimal representation in the standard deviation sense

}
§ 2.1

• Decomposition theories based on nonlinear field
dependent correlations to satisfy other criteria (§ 2.2 and § 3.6)

↓
Computation of random modes and associated random energies (§ 3.4)

↓
Galerkin projection of Navier–Stokes equations
onto random modes, reduced order modelling

and simulation (§ 3.7)

Table 1. Orthogonal decomposition and Galerkin modelling: organization chart.

The resulting three types of expansions are, in some sense, special in view of the
many possibilities arising from using nonlinear kernel methods (Scholköpf, Smola &
Müller 1998). These new theories and their relation to our formulation are discussed
in some detail in § 2.2. Once a criterion for decomposition has been identified, it
is possible to proceed with the computation of the orthogonal representation and
perform a modal analysis of the random flow as illustrated in § 3.4. Finally, the
weak orthogonality of the random spatial modes is used to develop low-dimensional
Galerkin representations of Navier–Stokes equations in the presence of uncertainty
(§ 3.7). The main steps to perform the analysis are summarized in table 1.

2.1. Formulation of the decomposition theory

We consider a random field u (x, t; ξ ) in a space–time domain Ω × T . This means
that the ordered pair (x, t) is such that x ∈ Ω (spatial domain) and t ∈ T (temporal
domain). The argument ξ labels an outcome of the random field. We look for
biorthogonal representations in the form

u (x, t; ξ ) =

∞∑
i=1

√
μ

(h)
i Ψ

(h)
i (t) Φ

(h)
i (x; ξ ) , (2.1)

where the superscript (h) denotes that we will construct these expansions according
to different variational principles.

We assume that the temporal modes ψ
(h)
i are strongly orthogonal in time while the

spatial modes Φ
(h)
i are weakly orthogonal in space with respect to appropriate inner

products defined below. We denote by ( , )T the inner product in the temporal domain
and by { , }h (h = 0, 1, 2) different types of inner products in the spatial domain. In
this paper we will consider

(ψi, ψj )T :=

∫
T

ψi(t)ψj (t) dt. (2.2)

For every pair of square-integrable random fields b(x; ξ ) and c(x; ξ ) in the spatial
domain we define the following three types of inner products:

{b, c}0 :=

∫
Ω

〈b〉 · 〈c〉 dx , (2.3)
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{b, c}1 :=

∫
Ω

〈b · c〉 dx , (2.4)

{b, c}2 :=

∫
Ω

(
〈b · c〉 − 〈b〉 · 〈c〉

)
dx , (2.5)

where the averaging operation 〈 · 〉 is defined as

〈f 〉 :=

∫
f (ξ ) W (ξ ) dξ , (2.6)

and W (ξ ) is the (non-degenerate) multivariate joint probability density of ξ . In
the context of stochastic methods for the solution of stochastic partial differential
equations (Ghanem & Spanos 1998; Xiu & Karniadakis 2003; Webster 2007) ξ

corresponds to the vector of random inputs forcing the system. The orthogonality
requirements for ψ

(h)
i and Φ

(h)
i are(

ψ
(h)
i , ψ

(h)
j

)
T

= δij , (2.7a){
Φ

(h)
i , Φ

(h)
j

}
h

= δij . (2.7b)

Now we consider the positive-definite functionals

‖u‖2
h :=

∫
T

{u, u}h dt , h = 0, 1, 2 . (2.8)

By elementary arguments of the calculus of variations we minimize the ‘distance’ (in
the generic norm ‖·‖h, h = 0, 1, 2) between the expansion (2.1) and the random field
u (x, t; ξ ). Physically, this corresponds to looking for expansions which minimize the
error in the mean sense (case h = 0), in the second-order moment sense (case h = 1),
and in the standard deviation sense (case h = 2).

The minimization of the error functional

Eh

[
ψ

(h)
1 , . . . , ψ

(h)
M

]
:=

∥∥∥∥u (x, t; ξ ) −
M∑
i=1

√
μ

(h)
i ψ

(h)
i (t) Φ

(h)
i (x; ξ )

∥∥∥∥
2

h

with respect to an arbitrary variation of ψ
(h)
k leads to the Euler–Lagrange equations

ψ
(h)
k (t) =

1√
μ

(h)
k

{
u, Φ

(h)
k

}
h
. (2.9)

From (2.1) and the orthogonality requirements (2.7) we obtain

Φ
(h)
k (x; ξ ) =

1√
μ

(h)
k

∫
T

u (x, t; ξ ) ψ
(h)
k (t) dt. (2.10)

Substitution of (2.10) into (2.9) gives the temporal eigenvalue problem

μ
(h)
k ψ

(h)
k (t) =

∫
T

T(h)(t, t ′)ψ (h)
k (t ′) dt ′, (2.11)

where the autocorrelation is

T(h)(t, t ′) := {u(x, t; ξ ), u(x, t ′; ξ )}h. (2.12)
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Depending on the choice of the inner product {, }h, we have different types of
kernels T(h) (t, t ′). Also, it follows from (2.3), (2.4) and (2.5) that

T(1)(t, t ′) = T(0)(t, t ′) + T(2)(t, t ′). (2.13)

The spectral decomposition of these kernels leads to constructions of different
expansions (2.1) according to different ‘sections’ of the random field u: through T(0)

we take optimal sections for the representation of the mean field; through T(1) we
take optimal sections for the representation of the second-order moment and through
T(2) we take optimal sections for the representation of the standard deviation. There
are connections between these different orthogonal representations; in particular,
there exist appropriate rotation operators which transform one representation into
another (see Appendix A for details).

It is often convenient to re-write the expansion (2.1) as

u (x, t; ξ ) =

∞∑
j=1

ψ
(h)
j (t) a(h)

j (x; ξ ) , (2.14)

where by definition

a(h)
j (x; ξ ) :=

√
μ

(h)
j Φ

(h)
j (x; ξ ) . (2.15)

The random energy of the kth random mode is

θ
(h)
k (ξ ) :=

∫
Ω

a(h)
k (x; ξ ) · a(h)

k (x; ξ ) dx. (2.16)

It is clear that this represents the random energy level of the kth mode if we consider
(2.14) and the fact that the temporal modes ψ

(h)
j are orthonormal. In this sense the

random energy level θ
(h)
k (ξ ) is essentially the squared L2 spatial norm of the (non-

normalized) random spatial modes a(h)
k . Another important quantity we will consider

is the correlation coefficient between different random energy levels

C
(h)
ij =

〈
θ

(h)
i θ

(h)
j

〉
−

〈
θ

(h)
i

〉〈
θ

(h)
j

〉
σ

θ
(h)
i

σ
θ

(h)
j

, (2.17)

where σ
θ

(h)
i

denotes the standard deviation of the ith energy level. This coefficient

reveals whether there exists a correlation between different random structures, and,
therefore, it allows study of the energy exchange between different random modes.

2.2. Decomposition theories based on nonlinear field-dependent correlations

In the previous section we have considered three different types of kernels, namely
T(h) (h = 0, 1, 2), for optimal representation of a random field in the mean, the
second-order moment and the standard deviation sense. These kernels were induced
by a suitable choice of the inner product spaces and minimum variational principles.
More precisely the inner product itself induces both the kernel and the minimization
principle.

However, there are many other possibilities which make use of nonlinear methods
to represent optimally other features of the random field u. These methods are today
known as kernel methods or nonlinear component analyses (Scholköpf et al. 1998;
Tenenbaum, de Silva & Langford 2000 Ham et al. 2003). The main difference with
respect to standard methods is that the field u is nonlinearly mapped onto another
‘feature’ space before decomposition is performed. Let us briefly discuss what are the
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G(u) Induced correlation kernel
for eigenvalue problem

〈u〉 T(0)

u T(1)

u − 〈u〉 T(2)

e−u

∫
Ω

〈e−u · e−u′ 〉 dx

Table 2. Special choices of G and corresponding correlation functions.

consequences of this approach. Given an arbitrary stochastic field u, we first construct
a nonlinear transformation

u → G (u) (2.18)

and subsequently a decomposition theory for G (u) based on the arguments of § 2.1.
The temporal correlation we obtain is

G(t, t ′) :=

∫
Ω

〈G (u) · G (u)′〉 dx. (2.19)

First we observe that the functions T(h) considered in § 2.1 are particular subcases
of this general theory as shown in table 2. There is a biunivocal correspondence
between the nonlinear transformation G and the induced correlation G. Given G it is
straightforward to obtain the correlation G through (2.19). Moreover it can be proved
that given a positive G there exist a mapping G such that (2.19) holds. As an example
of the correspondence

G (u) = e−u (2.20)

obviously induces the following type of correlation

G(t, t ′) =

∫
Ω

〈e−u · e−u′ 〉 dx. (2.21)

Within this framework it is seen that very general types of decoposition theories can
be formulated in order to satisfy general criteria. For instance Jenssen et al. (2007) and
Paiva, Xu & Principe (2006) have recently constructed orthogonal expansions based
on maximum Rényi (1961) second-order entropy principles. Statistical properties
of kernel principal components have been recently investigated by Blanchard,
Bousquet & Zwald (2007). In a field-theoretic view the correlation function G can
also be generated though functional methods such as the path integral representation
(Zinn-Justin 2002; Amit & Martı́n-Mayor 2005). This means that we can induce
a nonlinear mapping G implicitly through the partition function theory and study
complex interactions between the generalized modes by, e.g., perturbation expansions
or diagrammatic representations (Hoyle & Rattray 2004).

We leave general decomposition approaches using nonlinear field-dependent kernels
for future studies. In the next section we will consider representations of velocity fields
according to the theory presented in § 2.1 and apply the method to the random wake
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past a cylinder. In § 3.6 we describe applications of nonlinear kernel methods to
nonlinear dimensionality reduction in random space.

3. Application to the random laminar wake past a cylinder
In this section we study the random laminar wake past a circular cylinder

corresponding to random inflow. The purpose of this application is twofold. First,
we want to use the decomposition developed in the previous section to analyse the
random structures of this flow and to construct a Galerkin low-dimensional stochastic
model for the evolution of the system. Second, we want to investigate how the
representation (2.1) behaves when the dimensionality of the problem in random space
increases, e.g. when we consider stochastic input processes having a small correlation
length, or, more generally, when the system is subject to many simultaneous types of
uncertainties. We use functional polynomial chaos representations to compute both
the random flow and its decomposition into random modes (see Appendix B).

3.1. Wiener–Hermite functional representation of the Navier–Stokes equations

We consider the dimensionless form of the Navier–Stokes equations for an
incompressible fluid

∂v

∂t
+ (v · ∇ ) v = − ∇ p +

1

Re
∇2v , (3.1)

∇ · v = 0 , (3.2)

where v (x, t; ξ ) and p (x, t; ξ ) are dimensionless random velocity and pressure fields
respectively. The Reynolds number is based on the velocity U and on the diameter D

of the cylinder, i.e. Re = UD/ν, where U is the space–time average of the (statistical)
mean inflow streamwise velocity component.

We represent the velocity and the pressure on a polynomial chaos basis Γj (ξ )

v (x, t; ξ ) =

P∑
j=0

v̂j (x, t)Γj (ξ ) , (3.3)

p (x, t; ξ ) =

P∑
j=0

p̂j (x, t)Γj (ξ ), (3.4)

where {Γj (ξ )} are polynomial functionals, which are orthogonal with respect to the
joint probability density of the random input vector ξ . In § 3.2 we will characterize
this random input vector in terms of a set of normalized and independent Gaussian
random variables. Correspondingly, the polynomial functionals {Γj (ξ )} are the
standard Wiener–Hermite functionals (Wiener 1966), which have been employed
in turbulence modelling (Lee, Meecham & Hogge 1982; Meecham & Siegel 1964;
Meecham & Jeng 1968; Bodner 1969).

A substitution of (3.3) and (3.4) into the Navier–Stokes equations and subsequent
projection onto {Γj } leads to the following system of deterministic coupled partial
differential equations (k = 0, . . . , P )

∂ v̂k

∂t
+

P∑
i,j=0

〈ΓiΓjΓk〉
〈Γ 2

k 〉 (v̂i · ∇)v̂j = − ∇ p̂k +
1

Re
∇2v̂k , (3.5)

∇ · v̂k = 0 , (3.6)

to be solved for the unknown ‘chaos modes’ v̂j (x, t).
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Figure 1. (a) Correlation function of streamwise random velocity fluctuation. (b) Relative
energy of truncated Karhunen–Loève representations as a function of the number of modes.

3.2. Representation of the random inflow boundary condition

The dimensionless inflow streamwise velocity component vx is assumed to be a
time-independent wide-sense stationary Gaussian stochastic process in the form

vx(y; ξ ) = 1 + ux(y; ξ ) . (3.7)

(Wide sense stationarity means that the mean velocity 〈vx〉 is not y-dependent while
the covariance function depends only on |y − y ′|.)

The zero mean streamwise random fluctuation ux(y; ξ ) follows a Gaussian
correlation function

〈ux(y; ξ )ux(y
′; ξ )〉 = σ 2 exp

[
−A

(y − y ′)2

l2c

]
, (3.8)

where A is a normalization constant. The parameter σ defines in some sense the
‘magnitude’ of the perturbation ux . The correlation function (3.8), suitably normalized,
is shown in figure 1(a). We choose here A = 6 in order for the correlation length to
have a direct physical meaning, i.e. the correlation becomes approximately zero at
|y − y ′| = lc.

The spectral analysis of (3.8) leads to a Karhunen–Loève representation of the
inflow streamwise velocity component in the form

vx(y; ξ1, . . . , ξN ) = 1 + σ

N∑
i=1

√
λigi(y)ξi , (3.9)

where {ξi} is a set of zero-mean, uncorrelated and normalized Gaussian random
variables†; λi , gi(y) are, respectively, eigenvalues and eigenfunctions of an integral
operator having kernel 〈ux(y; ξ )ux(y

′; ξ )〉/σ 2. The random input multivariate

† We remark that zero-mean, uncorrelated Gaussian random variables are also necessarily
independent. This is an important remark since, as is well known, the Wiener–Hermite functional
polynomial representation (3.3) and (3.4) is constructed using a very special independent increment
(Wiener) process, i.e. it assumes stochastic independence of all the components of the random input
vector ξ .
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probability density W (ξ ), which appears in the definition (2.6), has the form

W (ξ ) = K exp

[
−1

2

N∑
i=1

ξ 2
i

]
, (3.10)

where K is a suitable normalization constant. Consequently, the functional polynomial
chaos {Γk (ξ )} is the classical Wiener–Hermite chaos. The parameter σ represents the
standard deviation of the random perturbation ux . This can be seen if we consider

〈vx(y; ξ )〉 = 1 , (3.11a)

〈vx(y; ξ )2〉 = 1 + σ 2

∞∑
i=1

λigi(y)2 (3.11b)

and note that the latter summation equals 1 because of the spectral decomposition
of (3.8):

〈ux(y; ξ )ux(y
′; ξ )〉 = σ 2

∞∑
i=1

λigi (y) gi(y
′) ⇒

∞∑
i=1

λigi(y)2 = 1. (3.12)

This means that if we consider infinite terms in the representation (3.9) the standard
deviation of the velocity streamwise component at the inflow theoretically does not
depend on y. However, when we consider a finite number of terms in the expansion the
standard deviation at the inflow may be a function of y. The truncation process has to
be performed with some care since we must check that the approximated correlation
function is still at least approximately Gaussian, which means, in particular, that the
energy of the neglected modes has to be negligible. In figure 1(b) we plot the relative
energy of the truncated expansion with respect to the energy of the ‘full’ expansion,
where e

N
and e are defined as

e
N

:=

N∑
i=1

λi , e :=

∞∑
i=1

λi . (3.13)

Quantitative results are shown in table 3. We note that when the correlation length
lc becomes smaller we need many more terms to properly represent the stochastic
process since it is approaching an independent increment process (Segall & Kailath
1976).

It is important to note that the correlation length lc of the velocity field at the inflow
cannot be chosen arbitrarily because it is connected to the Reynolds number of the
flow. It is physically rather unlikely that a realization of a low-Reynolds-number flow
exists for which the velocity field has a small correlation length at the inflow. Small
correlation length would make the velocity profile very irregular and noisy, which is
not observed in experiments at low Reynolds number (Zdravkovich 1997). In § 3.3 we
consider the random laminar wake at Re = 100 and, therefore, we choose lc = 14,
which means that the random inflow velocity is correlated up to 28 diameters of the
cylinder. Some realizations of these profiles are shown in figure 2(a). In figure 2(b) we
show that a truncation up to order N = 6 of the Karhunen–Loève expansion (3.9)
gives an approximated correlation function (3.12) essentially indistinguishable from
the exact Gaussian correlation (3.8) for lc = 14 (see also table 3).

3.3. Stochastic direct numerical simulation (DNS) of the random wake

We have simulated the time-dependent random flow at Re = 100 by discretizing the
system of equations (3.5) and (3.6) using the spectral/hp element method described
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N

2 4 6 8 10

2 15.18% 31.05% 44.98% 57.31% 67.82%
lc 6 44.06% 74.77% 90.92% 97.39% 99.40%

14 78.51% 98.05% 99.91% 100.00% 100.00%

Table 3. Relative energy eN/e of Karhunen–Loève representation as a function of the
correlation length lc and number N of Gaussian independent random variables.
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Figure 2. (a) Some samples of the dimensionless random inflow boundary condition for
correlation length lc = 14 and standard deviation σ = 0.05. (b) Convergence to the correct
correlation function for truncated Karhunen–Loève representations of the random inflow
process (lc = 14).
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Figure 3. Geometry and computational mesh composed of 412 spectral elements of
polynomial order 11.

in Karniadakis & Sherwin (2005). The computational domain is shown in figure 3
and it is composed of 412 spectral elements of polynomial order 11 per direction;
see computational details for this problem in Ma, Karamanos & Karniadakis (2000).
All the results presented hereafter are based on a representation of the random input
process having lc = 14 and σ = 0.05 in terms of N = 6 random variables. We use
a third-order Wiener–Hermite representation for velocity and pressure fields. This
means that the number of coupled partial differential equations (3.5) we have solved
simultaneously in the space–time domain is P = 83.
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Figure 4. Standard deviation of streamwise (a) and crossflow (b) velocity components at
different time instants. The shedding period is about |T | = 6 convective time units.

The initial condition for the system of equations (3.5) is a fully developed
deterministic wake at Re = 100. The random inflow boundary condition generates a
transient state for the stochastic velocity as shown in figure 4. The standard deviation
of the velocity field increases in time due to the randomness of the streamwise velocity
profile at the inflow and after long-term integration it will saturate, approaching a
constant field having y = 0 symmetry. The mean flow approximately still follows
the deterministic evolution in one shedding period, which is approximately |T | = 6
convective time units. Since the period of integration is quite small, the Wiener–
Hermite functional representation captures accurately the statistics of the flow field
(Wan & Karniadakis 2006a). This claim will also be verified in § 3.7, where we compare
the prediction of the low-dimensional Galerkin system with the DNS results.

3.4. Stochastic eigen-decomposition and modal analysis

In order to perform the decomposition (2.1) we have extracted 40 equidistant
stochastic snapshots of the random flow field in one shedding period of the mean
flow. This means that each snapshot contains a complete statistical description of
the flow. In other words the snapshots we are considering are in the form v

(
x, tj ; ξ

)
(j = 1, . . . , 40). First, we decompose the random velocity field v (x, t; ξ ) into a mean
flow U with a superimposed random fluctuation u

v (x, t; ξ ) = U (x) + u (x, t; ξ ) , (3.14)
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Figure 5. Correlations functions T(0)(t, t ′), T(1)(t, t ′) and T(2)(t, t ′).

where by definition

U (x) :=
1

|T |

∫
T

〈v (x, t; ξ )〉 dt (3.15)

and |T | denotes the measure of the temporal domain, i.e. the period of integration.
Next, we expand the random fluctuation u according to (2.1), or equivalently (2.14).

We compute different expansions corresponding to h = 0, 1, 2 (see (2.3), (2.4) and
(2.5)). As previously mentioned, these different representations will give us optimal
convergence in the mean, in the second-order moment and in the standard deviation
for the representation of the random fluctuation u (x, t; ξ ). We note that each random
mode a(h)

k (x; ξ ) (or equivalently Φ
(h)
k (x; ξ )) is strongly divergence-free since (3.14), (2.7)

and (3.2) imply

∇ · a(h)
k (x; ξ ) =

∫
T

∇ · u (x, t; ξ ) ψ
(h)
k (t) dt = 0 . (3.16)

In figure 5 we show the correlation functions (2.12) obtained for h = 0, 1, 2. Note
that the covariance T(2)(t, t ′) increases along the diagonal t = t ′ as it represents
the (spatial) average of the flow standard deviation, which is obviously increasing
in time (in the transient state only) due to the random inflow boundary condition.
T(0)(t, t ′) exhibits the classical pattern of a periodic phenomenon. The summation
of T(0)(t, t ′) and T(2)(t, t ′) gives T(1)(t, t ′) which closely resembles T(0)(t, t ′) due
to the relative small contribution of T(2)(t, t ′). The eigenvalues of the correlation
functions (2.12) are shown in figure 6. In figure 7, we show the streamwise
component of the mean and the standard deviation of some normalized random
spatial modes obtained using the inner products {, }1. The symmetry of the mean
modes (figure 7a) suggests a periodic vortex street pattern of the mean flow. A similar
pattern analysis can be performed for random modes obtained using other inner
products.

Now we study the energy of the random modes and their interaction. In figure 8
we show the mean and the standard deviation of the random energy levels (2.16) (we
kept the same ordering of eigenvalues as in figure 6). The noisy behaviour observed
in figure 8(a) deserves some comments. When we decompose the random velocity by
a principle of minimum distance in the mean sense (inner product {, }0) the amount
of statistical information we are actually using to construct the orthogonal expansion
is very limited and in practice it includes only the mean flow data. In representing the
random energy (2.16), we need to compute correlations between orthogonal modes
which obviously fail to capture any statistics of order higher than one if they are
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obtained in the inner product {, }0. In other words, the series expansion we construct
in the inner product {, }0, despite its optimality for the mean flow representation,
is not complete in the statistical sense (we will discuss this important issue more in



Stochastic low-dimensional modelling of random laminar wake 353

(a) (b) (c)
105

100

10–5

10–10

105

100

10–5

10–15

10–10

105

100

10–5

10–15

10–10

100 101 102

k
100 101 102

k
100 101 102

k

�θk
(0)�

σθk
(0) 

�θk
(1)�

σθk
(1) 

�θk
(2)�

σθk
(2) 

Figure 8. Random energy levels (2.16) obtained using different inner products: mean and

standard deviation of θ
(0)
k (a), θ

(1)
k (b) and θ

(2)
k (c).

|Cij
(0)| |Cij

(1)| |Cij
(2)|

i

j

0

0.2

0.4

0.6

0.8

1.0

i

j

0

0.2

0.4

0.6

0.8

1.0

i

j

0

0.2

0.4

0.6

0.8

1.0

Figure 9. Absolute values of correlation coefficients between random energy levels.

detail in § 3.7.) and therefore the correlations (see (2.16)) required to compute θ
(0)
k are

not accurate. The absolute value of the correlation coefficient (2.17) between different
energy levels is shown in figure 9. The plot should be interpreted as follows: each cell
is identified by two labels i and j (bottom left corner of each plot is i, j = 1). The
grey intensity of each cell represents the value of the correlation coefficient between
the energy levels i and j . It is interesting to note that higher-order modes are strongly
correlated (C(h)

ij  1) while the exchange of energy between lower-order modes is
more irregular (this is influenced somewhat by the way we have ordered the levels
θ

(h)
i ). In particular, we note that when using the representation h = 2 there are two

zones of highly correlated energy levels (see figure 9):
i, j � 13 energy exchange between lower-order modes,
i, j � 14 energy exchange between higher-order modes.

The correlation between the energy of higher-order and lower-order modes is weaker.

3.5. Low-dimensionality of the random wake

We study convergence in a space–time sense of the mean and the standard deviation
of the random flow as a function of the number of stochastic POD modes M . To this
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end, we define

u
M

(x, t; ξ ) :=

M∑
j=1

ψ
(h)
j (t) a(h)

j (x; ξ ) , (3.17)

where M is equal to or less than the number of extracted temporal snapshots. The
low-dimensional representation of the mean and the standard deviation of the velocity
field is

〈v
M

(x, t; ξ )〉 = U (x) + 〈u
M

(x, t; ξ )〉 , (3.18)

σv
M

(x, t) = σu
M

(x, t) . (3.19)

In figures 10, 11 and 12 we show convergence of the mean and the standard deviation
of the streamwise and the crossflow component of the velocity at the downstream
crossline x = 3.

We define the space–time errors in the L2 (Ω × T ) norm as follows

‖〈v〉 − 〈v
M

〉‖2

Ω×T
:=

∫
T

∫
Ω

|〈v〉 − 〈v
M

〉|2 dx dt, (3.20)

‖σv − σv
M

‖2
Ω×T

:=

∫
T

∫
Ω

|σv − σv
M

|2dx dt. (3.21)

In figure 13 we show the errors (3.20) and (3.21) with respect to DNS versus the
number of modes M using different types of inner products. Not surprisingly, figure 13
shows that the expansion obtained using the mean inner product (case h = 0) cannot
represent the standard deviation of the flow (see also figure 10). Similar behaviour is
observed in figure 8(a) where it is shown that the random energy levels increase at
high modes due to the inability of the modes a(0)

j to properly represent the correlation
functions appearing in (2.16). We remark that the error plots for the mean (figure
13(a) case h = 0) and for the standard deviation (figure 13(b) case h = 2) represent
the minimum errors achievable, respectively, for the mean and the standard deviation
given a certain number of modes M .

3.6. Accuracy of orthogonal expansions as a function of the number of random inputs

In this section we study the accuracy and sensitivity of the orthogonal representations
(2.1) as a function of the number of random inputs forcing the system. The objective
of this study is to prove the robustness of our approach in modelling high-dimensional
random input vectors such as those arising from the representation of stochastic flow
processes having small correlation length or in the design of fluid systems with a
great number of uncertain parameters.

In table 4 we report normalized errors with respect to DNS data of low-dimensional
representations using M modes as a function of the number random inputs N . We
need to normalize these errors to make an effective comparison because if we increase
the number of random variables N in the representation of the random boundary
condition (3.9) for fixed correlation length, the standard deviation of the random
inflow will increase as well (see figure 1b and figure 2b). In table 4 we report results
for 2, 4 and 6 random variables.

We note that the number of random spatial modes required to achieve a desired
level of accuracy does not seem to depend on the number of random inputs. To
explain this important result, we recall that each random spatial mode contains
a complete representation, which includes all these random variables. Therefore, if
the dimensionality of the random input vector increases then the computation of
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each random mode requires more effort. (It can be proved that the number of
terms is P = (N + p)!/(N!p!), where N is the number of random inputs and p is
the polynomial order of the functional chaos expansion representation). This leads to



356 D. Venturi, X. Wan and G. E. Karniadakis

0 2–2–4 4
0

0.5

1.0

1.5

DNS
M = 4
M = 8
M = 16

0 2–2–4 4
0

0.02

0.04

0.06

0.08

0 2–2–4 4

0

–0.2

–0.4

0.2

0.4

y
0 2–2–4 4

0

0.02

0.04

0.06

0.08

y

�
v x

M
�

�
v y

M
�

σ
v y

M

σ
v x

M

Figure 12. As figure 10 but the orthogonal expansion is obtained in the standard deviation
inner product {, }2.

(a) (b)

0 5 10 15 20 25
10–4

10–3

10–2

10–1

100

101

M

||�
v�

 –
 �

v M
�

|| Ω
 ×

 T

h = 0
h = 1
h = 2

0 5 10 15 20 25
10–4

10–3

10–2

10–1

100

101

M

||σ
v–

 σ
v M

 ||
Ω

 ×
 T

h = 0
h = 1
h = 2

Figure 13. Error in the L2 norm with respect to stochastic DNS of low-dimensional
representation versus the number of modes: (a) error in mean; (b) error in the standard
deviation. Shown are results obtained using different expansions.

substantial increases in computing; however, all the random modes can be determined
offline in a pre-processing stage, so that they will be readily available for a real-time
stochastic low-dimensional simulation. Moreover, one can resort to sparse tensor
products or sparse quadrature grids in the multi-dimensional random space to reduce
further the computational complexity for large N , e.g. see Gerstner & Griebel (1998),
Novak & Ritter (1996, 1999). Also, new effective approaches for efficient nonlinear
dimensionality reduction in random space have been proposed by different authors
(Tenenbaum et al. 2000; Belkin & Niyogi 2003). As Ham et al. (2003) pointed out,
many of these methods belong to the so-called kernel principal component analysis
(Scholköpf et al. 1998), which makes use of a ‘feature space’ in order to construct a
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‖〈v〉 − 〈vM〉‖Ω×T /‖〈v〉‖Ω × T ‖σv − σvM
‖Ω×T /‖σv‖Ω×T

h = 0
M M

5 10 15 20 25 5 10 15 20 25

1 0.67 0.037 0.0073 0.0013 0.00035 3.26 3.21 3.04 2.92 2.36
2 0.66 0.037 0.0072 0.0013 0.00035 3.36 3.31 3.14 3.02 2.45

N 4 0.66 0.037 0.0071 0.0013 0.00035 3.45 3.41 3.23 3.10 2.54
6 0.66 0.037 0.0071 0.0013 0.00035 3.46 3.41 3.23 3.11 2.54

h = 1
M M

5 10 15 20 25 5 10 15 20 25

1 0.94 0.096 0.016 0.0029 0.00054 0.49 0.069 0.012 0.0024 0.00044
2 0.94 0.096 0.016 0.0029 0.00054 0.50 0.070 0.012 0.0024 0.00044

N 4 0.94 0.095 0.016 0.0028 0.00054 0.51 0.071 0.012 0.0025 0.00045
6 0.94 0.095 0.016 0.0028 0.00054 0.51 0.071 0.012 0.0025 0.00045

h = 2
M M

5 10 15 20 25 5 10 15 20 25

1 3.88 0.81 0.18 0.029 0.0030 0.25 0.044 0.0096 0.0021 0.00042
2 3.60 0.58 0.090 0.017 0.0022 0.28 0.047 0.011 0.0023 0.00044

N 4 3.38 0.53 0.072 0.014 0.0019 0.29 0.050 0.011 0.0024 0.00045
6 3.34 0.53 0.071 0.014 0.0019 0.29 0.050 0.011 0.0024 0.00045

Table 4. Percentage relative errors in the mean (left) and in the standard deviation (right)
as a function of the number of random variables N forcing the system and the number of
random modes M used for the low-dimensional representation. Shown are different results
corresponding to h = 0, 1, 2.

kernel for capturing the nonlinear intrinsic properties of the ensembles of solutions.
Before performing the standard eigen-decomposition of the covariance matrix which
leads to dimensionality reduction, the procedure geometrically unfolds the manifold
of the ‘feature space’, which can be also obtained by the so-called learning kernel
methods (Weinberger, Sha & Saul 2004; Saul & Roweis 2003; Scholköpf & Smola
2002). In a polynomial chaos representation we already have an explicit analytic
expression for such a curved manifold, which is given in polynomial form through
the chaos basis Γi (ξ ). Therefore, the problem of nonlinear dimensionality reduction
amounts to defining a minimum principle for the geodetic distance between points
over this curved manifold, e.g. see Tenenbaum et al. (2000), Weinberger & Saul (2006).
Geodetic distances over polynomial hypersurfaces can be expressed in analytical form
because the metric of the surface can be computed explicitly. Therefore, it is possible
to develop a general theory for nonlinear dimensionality reduction of polynomial
chaos representations.

3.7. Random projection of Navier–Stokes equations onto random spatial modes

The deterministic nature of the temporal modes in the representation (2.1) opens the
possibility of constructing stochastic low-dimensional models of random flows. In
fact, the weak orthogonality property of random spatial modes can be used to define
random projections in a quite straightforward manner. However, before proceeding
with the computation and representation of the low-dimensional model for the wake,
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we point out some important issues concerning the completeness of the projections.
In the process of constructing the Galerkin system, one important consideration,
which must be carefully checked, is that the approximated stochastic solution is
consistent, i.e. it converges to the exact solution as the number of projections for the
spectral representation increases to infinity. It is clear that the expansion obtained by
decomposing the kernel T(0) is not of this kind. In fact, it is essentially an expansion
of the mean flow, which cannot obviously represent higher-order statistics if the
system is nonlinear. In this particular application, this can be seen from the error
plot reported in figure 13(b), in which it clearly appears that the case h = 0 cannot
represent the standard deviation of the flow. Therefore, in considering the Navier–
Stokes equations, here written in operatorial form as N (v) = 0, and constructing
a low-dimensional model through an approximated solution v

M
, we must carefully

check that

‖N(v) − N(v
M
)‖2 → 0 as M → ∞ (3.22)

in a proper norm; here, we require convergence in the ‖ · ‖2
h norms. If the

representation of the stochastic solution v
M

is not complete, then the condition (3.22)
cannot be satisfied. This happens, for instance, when the representation obtained in
the inner product {, }0 is used as an approximated solution for the velocity field. In
fact, as can be easily seen∫

Ω

〈N(v) − N(v
M
)〉2 dx � 0 as M → ∞ (3.23)

because the operator N is nonlinear. The representation obtained in the inner product
{, }1 is complete and valid under the same hypothesis of the functional polynomial
chaos theory.

In contrast, for the inner product {, }2 we observe that we have convergence (in the
L2 sense) to the mean and to the standard deviation, but there might be some problems
if the standard deviation of the flow is identically zero somewhere. The completeness
of the representation obtained by decomposing the random field according to the
inner product {, }2 relies on its linear equivalence with the decomposition obtained in
the inner product {, }1.

In order to obtain a Galerkin system optimally convergent in the mean sense, we
can use an oblique projection onto random spatial modes a(0)

k in the form

{N(v
M
), a(0)

k }0 = 0. (3.24)

We need to employ oblique projection because v
M

cannot be represented using the
expansion obtained in the inner product {, }0. Therefore, we have to use another
complete representation for v

M
(for instance, the expansion obtained in the inner

product {, }1). Thus, the Galerkin system will include rotation operators in the form
discussed in Appendix A (equation (A 3)).

Now, we consider the Navier–Stokes equations (3.1). A substitution of (3.14) into
(3.1) yields

∂u
∂t

+ (U · ∇ ) U + (U · ∇ ) u + (u · ∇ ) U + (u · ∇ ) u = ∇p +
1

Re
( ∇ 2U + ∇ 2u).

(3.25)

Next, we expand the fluctuating stochastic field u (x, t; ξ ) into our generalized series
(3.17) and we perform a Galerkin projection onto the (non-normalized) strongly
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divergence-free random spatial modes a
(h)
j according to the inner product {, }h (h =

1, 2). We obtain (hereafter, the summation convention on the pedices l and n is
employed)

{

a
(h)
l

∂ψ
(h)
l

∂t
+ (U · ∇ )U + (U · ∇ )a(h)

l ψ
(h)
l +

(

a
(h)
l · ∇

)

U

+
(

a
(h)
l · ∇

)

a
(h)
n ψ

(h)
l ψ (h)

n + ∇ p −
1

Re

(

∇ 2
U + ψl ∇ 2

a
(h)
l

)

, a
(h)
m

}

h

= 0 . (3.26)

The pressure term does not drop out because of the random inflow boundary
condition. In general, it is well known that the pressure integral does not vanish and
may not even be negligible. The need to model this term has already been anticipated
by Holmes et al. (1996) from a Fourier-space representation. Also, Noack et al. (2005)
pointed out the need for a pressure-term representation in empirical Galerkin models
and modal energy flow analysis. In this paper, we do not represent the pressure
integral in terms of the velocity field (see Noack et al. 2005 for details); instead, to
simplify our analysis, we use the pressure field obtained from the stochastic DNS:
From (3.26) the following system of ordinary differential equations is obtained:

dψ (h)
m

dt
=

1

µ
(h)
m

(

−C(h)
m − L

(h)
ml ψ

h
l − Q

(h)
lnmψh

l ψh
n

)

, (3.27)

where

C(h)
m :=

{

(U · ∇)U, a
(h)
m

}

h
−

1

Re

{

∇ 2
U, a

(h)
m

}

h
+

{

∇p, a
(h)
m

}

h
, (3.28a)

L
(h)
ml :=

{

(U · ∇)a(h)
l , a

(h)
m

}

h
+

{(

a
(h)
l ·∇

)

U, a
(h)
m

}

h
−

1

Re

{

∇ 2
a

(h)
l , a

(h)
m

}

h
, (3.28b)

Q
(h)
lnm :=

{

(a(h)
l · ∇)a(h)

n , a
(h)
m

}

h
. (3.28c)

The initial condition for ψ (h)
m is

ψ (h)
m (0) =

1

µ
(h)
m

{

u (x, 0; ξ ) , a
(h)
m (x; ξ )

}

h
. (3.29)

Explicit expressions for the coefficients (3.28) corresponding to inner products {, }1

and {, }2 are given in Appendix C. Note that the projections {·, a
(h)
k }h (h = 1, 2) allow

us to obtain two different specialized sets of equations which take different ‘sections’ of
the solution domain. In particular, { · , a

(2)
k }2 generates an optimal temporal dynamics

for modelling of the standard deviation, while { · , a
(1)
k }1 generates an optimal temporal

dynamics for modelling of the second-order moment.

3.8. Low-dimensional simulation of the random wake

In figures 14 and 15 we compare the evolution of the temporal modes extracted from
the stochastic DNS data to the evolution predicted by the system (3.27). As already
mentioned, two different types of projections are considered: in figure 14 we report
results using { · , a

(1)
k }1 while in figure 15 we show results obtained using { · , a

(2)
k }2. In

both cases, we see that the accuracy is increasing as more projections are employed
in the representation.

In figure 16 we show the errors in the L2 spatial norm as a function of time
for the mean and the standard deviation of the velocity fields obtained from the
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Figure 14. Case h = 1 (second-order-moment inner product). Comparison between temporal
evolution predicted by the system (3.27) (——) and the DNS-based evolution (◦).

low-dimensional model. These errors are defined as follows:

‖〈v〉 − 〈v
M

〉‖2
Ω :=

∫
Ω

|〈v〉 − 〈v
M

〉|2 dx , (3.30)

‖σv − σv
M

‖2
Ω :=

∫
Ω

|σv − σv
M

|2 dx . (3.31)

We report results for the projections { · , a(1)
k }1 and { · , a(2)

k }2 as a function of the
number of modes M . Specifically, we have used 10, 20 and 30 modes for the simulation
of the low-dimensional system and correspondingly 5, 10 and 20 modes for the
computation of the errors. The Galerkin low-dimensional model allows computation
of the relevant statistics (mean and standard deviation) of the system at some non-
observed/off-design states, provided that the information for such a prediction is
contained in the snapshot set (Burkardt & Webster 2007).
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Figure 15. Case h = 2 (standard deviation inner product). Comparison between temporal
evolution predicted by the system (3.27) (——) and the DNS-based evolution (◦).

4. Summary
We have studied the random laminar wake past a circular cylinder corresponding

to a random inflow boundary condition, which is represented by a wide-sense
stationary Gaussian stochastic process. We simulated the random flow using an
accurate stochastic DNS based on the Wiener–Hermite functional representation.
Subsequently, we decomposed the random velocity field according to a new expansion
developed in § 2.1, and in § 3.7 we constructed a low-dimensional stochastic model
of the random wake though a Galerkin projection onto random spatial modes.
These new tools allow us to analyse the flow from a new perspective, exploiting
the relation between the random dynamics in space–time and its hierarchical set of
random structures. They also give us the possibility of constructing low-dimensional
stochastic models, which can be useful for controlling flow systems operating under
uncertain conditions.
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Figure 16. Errors for the low-dimensional simulation as a function of time. (a): Error in
the mean (3.30); (b): error in the standard deviation (3.31). Shown are results obtained using
different types of projections and a different number of modes in the simulation: 5 modes (�);
10 modes (◦); 20 modes (�).

We have shown that the accuracy of the orthogonal expansion does not depend
on the number of random inputs forcing the system although the computational
complexity of each mode depends heavily on them (‘curse of dimensionality’).
However, all random modes can be computed offline so that they will be readily
available for a real-time stochastic low-dimensional simulation. In addition, new
methods that employ sparse multi-level quadrature formulae for multi-dimensional
problems can be employed to expedite the offline computations while new learning
algorithms can be exploited for further nonlinear dimensionality reduction.

Partial support for his work was provided by ONR, NSF and AFOSR. The second
and third authors would like to acknowledge additional support by the ONR ERSD
Consortium. The computations were performed on NSF’s supercomputing centers
(NCSA, PSC and SDSC).

Appendix A. Connections between different expansions through oblique
projections

The decomposition of the kernels T(h) (t, t ′) for h = 0, 1, 2 allows us to identify three
different types of random modes and associated orthogonal projections in random
space, which give rise to three expansions optimally convergent in the mean sense
(h = 0), in the second-order moment sense (h = 1), and in the standard deviation
sense (h = 2). Given a complete orthogonal representation of the stochastic field
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u (x, t; ξ ), it is easy to transform it into another one by a suitable rotation of the
functional space. To this end, we let

u (x, t; ξ ) =

M∑
i=1

ψ
(1)
i (t) a(1)

i (x; ξ ) . (A 1)

According to (2.9) we can transform the temporal modes from this representation
into another one (for instance the h = 2) as

ψ
(2)
k (t) =

M∑
m=1

[R1→2]km ψ (1)
m (t) . (A 2)

The operator

[R1→2]km :=
{a(1)

m , a(2)
k }2

μ
(2)
k

(A 3)

is orthogonal (i.e. it is a rotation) since both ψ
(1)
k , ψ

(2)
k are orthonormal with respect

to the same inner product ( , )T . This rotation transforms the representation in such
a way that the new decomposition is optimally convergent in the standard deviation
sense. We also have the rotation from the representation h = 1 to the representation
h = 0

[R1→0]km :=
{a(1)

m , a(0)
k }0

μ
(0)
k

. (A 4)

Appendix B. Polynomial chaos representations
We assume that we have available a functional polynomial chaos expansion up to

order P for the random field u (x, t; ξ )

u (x, t; ξ ) =

P∑
l=0

ûl (x, t)Γl (ξ ) , (B 1)

where {Γl (ξ )} is the generalized chaos basis (Xiu & Karniadakis 2002; Wan &
Karniadakis 2006b), which is orthogonal in the L2 sense with respect to the joint
probability density of the random input vector ξ . We have denoted such a probability
density by W (ξ ). The temporal autocorrelations T(h) (t, t ′) defined in (2.12) have the
following representations

T(0)(t, t ′) =

∫
Ω

û0(x, t) · û0(x, t ′) dx , (B 2)

T(1)(t, t ′) =

P∑
l=0

〈
Γ 2

l

〉 ∫
Ω

ûl(x, t) · ûl(x, t ′) dx, (B 3)

T(2)(t, t ′) =

P∑
l=1

〈Γ 2
l 〉

∫
Ω

ûl(x, t) · ûl(x, t ′) dx. (B 4)

Having these expressions we can solve the eigenvalue problem (2.11) to obtain the
eigenvalues μ

(h)
k and the temporal modes ψ

(h)
k . Subsequently, we consider the following
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chaos representation for the normalized spatial modes:

Φ
(h)
k (x; ξ ) =

P∑
l=0

Φ̂
(h)

kl (x) Γl (ξ ) , (B 5)

where

Φ̂
(h)

kj (x) =
1√
μ

(h)
k

∫
T

ûj (x, t) ψ
(h)
k (t) dt . (B 6)

The latter equality follows from (2.10), (B 1) and (B 5). Equivalently, we obtain the
following expression for the non-normalized random spatial modes a(h)

k (x; ξ ):

a(h)
k (x; ξ ) =

P∑
l=0

â(h)
kl (x) Γl (ξ ) , â(h)

kj (x) =
1

μ
(h)
k

∫
T

ûj (x, t) ψ
(h)
k (t) dt . (B 7)

Associated with these modes, we define a ‘random energy’ (2.16), whose
representation in the polynomial chaos basis is

θ
(h)
k (ξ ) =

P∑
l,m=0

Γl (ξ ) Γm (ξ )

∫
Ω

â(h)
kl (x) · â(h)

km (x) dx . (B 8)

The mean and the second-order moment of these quantities are readily obtained as

〈
θ

(h)
k

〉
=

P∑
l=0

〈
Γ 2

k

〉 ∫
Ω

â(h)
kl · â(h)

kl dx , (B 9a)

〈
θ

2 (h)
k

〉
=

P∑
l,m,n,p=0

〈ΓlΓmΓnΓp〉
∫

Ω

â(h)
kl · â(h)

km dx
∫

Ω

â(h)
kn · â(h)

kp dx , (B 9b)

where the fields âkl are defined in (B 7). The correlation coefficient (2.17) between
different energy levels has a similar representation.

Appendix C. Coefficients arising from the Galerkin projection of the
Navier–Stokes equations onto random spatial modes

Here, we obtain explicit expressions for the coefficients arising from the Galerkin
projection using different projectors { · , a(h)

j }h (h = 1, 2). The pressure term does not
drop out because of the random inflow boundary condition. We denote by ∂Ω the
set of boundaries of the computational domain; it includes inflow, outflow, cylinder
surface and the two (upper and lower) sides where periodicity is imposed. We employ
integration by parts and the Gauss theorem to transform the pressure term into an
integral along these boundaries. Using the fact that the random spatial modes are
strongly divergence-free (see (3.16)) we obtain∫

Ω

a(h)
m · ∇pdx = −

∫
Ω

∇ · a(h)
m p dx +

∫
∂Ω

p
(
a(h)

m · n
)
dx

= 0 +

∫
∂Ω

p
(
a(h)

m · n
)
dx , (C 1)

where n denotes the outward normal unit vector at the boundaries ∂Ω . Depending
on the choice of the projection { · , a(h)

j }h (h = 1, 2), the last integral has different
expressions as shown in the following subsections § C.1 and § C.2.
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C.1. Representation of the Galerkin system using the projectors { · , a(1)
j }1

In the second-order moment inner product (2.4) we obtain

C(1)
m =

∫
Ω

(U · ∇)U ·
〈

a(1)
m

〉
dx − 1

Re

∫
Ω

∇2U ·
〈

a(1)
m

〉
dx +

∫
∂Ω

〈
pa(1)

m

〉
· n dx , (C 2)

L(1)
ml =

∫
Ω

〈
(U · ∇ )a(1)

l · a(1)
m

〉
dx +

∫
Ω

〈(
a(1)

l · ∇
)
U · a(1)

m

〉
dx

− 1

Re

∫
Ω

〈
∇2a(1)

l · a(1)
m

〉
dx , (C 3)

Q(1)
lnm =

∫
Ω

〈(
a(1)

l · ∇
)
a(1)

n · a(1)
m

〉
dx . (C 4)

The functional polynomial chaos representation of these coefficients takes the form
(Einstein’s summation convention on repeated indexes from 0 to P is assumed
hereafter)

C(1)
m =

∫
Ω

(U · ∇)U · â(1)
m0 dx +

1

Re

∫
Ω

∇ U · ∇ â(1)
m0 dx, +

〈
Γ 2

n

〉 ∫
∂Ω

p̂n â(1)
mn · n dx , (C 5)

L(1)
ml =

〈
Γ 2

n

〉 ∫
Ω

(U · ∇)â(1)
ln · â(1)

mn dx +
〈
Γ 2

n

〉 ∫
Ω

(
â(1)

ln · ∇
)
U · â(1)

mn dx

+
〈
Γ 2

n

〉 1

Re

∫
Ω

∇ â(1)
ln · ∇ â(1)

mn dx, (C 6)

Q(1)
lnm =

〈
ΓpΓqΓr

〉 ∫
Ω

(
â(1)

lp · ∇
)
â(1)

nq · â(1)
mr dx . (C 7)

C.2. Representation of the Galerkin system using the projectors { · , a(2)
j }2

From the inner product definitions (2.3), (2.4) and (2.5), for every pair of random
fields b (x; ξ ), c (x; ξ ) in the spatial domain we have

{b, c}2 = {b, c}1 − {b, c}0 . (C 8)

Therefore, the coefficients arising from Galerkin projection using the ‘standard
deviation’ inner product (2.5) are

C(2)
m =

∫
∂Ω

(〈
pa(2)

m

〉
− 〈p〉

〈
a(2)

m

〉)
· n dx , (C 9)

L(2)
ml =

∫
Ω

(〈
(U · ∇)a(2)

l · a(2)
m

〉
−

〈
(U · ∇)a(2)

l

〉
·
〈

a(2)
m

〉)
dx

+

∫
Ω

(〈(
a(2)

l · ∇
)
U · a(2)

m

〉
−

〈(
a(2)

l · ∇
)
U

〉
·
〈

a(2)
m

〉)
dx (C 10)

− 1

Re

∫
Ω

(〈
∇2a(2)

l · a(2)
m

〉
−

〈
∇2a(2)

l

〉
·
〈

a(2)
m

〉)
dx , (C 11)

Q(2)
lnm =

∫
Ω

(〈(
a(2)

l · ∇
)
a(2)

n · a(2)
m

〉
−

〈(
a(2)

l · ∇
)
a(2)

n

〉
·
〈

a(2)
m

〉)
dx . (C 12)

The functional chaos expansion representation of these coefficients can be obtained
by substitution of (B 7) into the above expressions.
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